THERMAL DECOMPOSITION OF AMMONIUM FLUOROFERRATES (NH₄)_xFeF_{2x} ($2 \le x \le 3$)

N. M. Laptash and S. A. Polyshchuk

Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia

(Received January 14, 1994)

Abstract

Different ammonium fluoroferrates $(NH_4)_xFeF_{2x}$ ($2\leq x\leq 3$) have been investigated. The thermal decomposition of the compounds obtained can be interpreted by their identical crystal structures (cryolite type). The decomposition products of all ammonium fluoroferrates formed in initial stage are isostructural of NH₄FeF₄. The decomposition is accompanied by the partial reduction of Fe(III) to Fe(II) by ammonium isolated. The end product of the thermal decomposition is FeF₂ and FeF₃ mixture.

Keywords: ammonium fluoroferrates, thermal decomposition

Introduction

The thermal decomposition of ammonium hexafluoroferrate $(NH_4)_3FeF_6$ is known [1]. The process was carried out in dry nitrogen, it can be expressed by the scheme:

 $(NH_4)_3FeF_6 \xrightarrow{280^\circ C} NH_4FeF_4 \xrightarrow{410^\circ C} FeF_3.$

However, by Menz and Bentrup [2], ammonium hexafluorochromate to be isostructural with $(NH_4)_3FeF_6$ decomposes in quasi-isobaric conditions via NH_4CrF_4 to CrF_3 and additional Cr_2F_5 is formed caused by the partial reduction of CrF_3 by NH_3 . We suppose that the thermal decomposition of $(NH_4)_3FeF_6$ is accompanied by the same effect because there is a mobile equilibrium of Fe(III) \geq Fe(II).

In present work different ammonium fluoroferrates were obtained and detailed studied of thermal decomposition in quasi-isobaric conditions was carried out.

Experimental

The chemical analysis data and synthetic methods of ammonium fluoroferrates are listed in Table 1. The products formed were analysed for ammonia, fluorine and metal contents. Ammonia was determined by the Kjeldahl method, fluorine by distillation of H_2SiF_6 and ferrum by atomic absorption method.

TG, DTG and DTA curves were recorded with a Q 1000 derivatograph. 200–300 mg of powder samples were heated in a Pt-crucible in the range $25-500^{\circ}$ C at a constant rate of 5 and 10 deg·min⁻¹.

The IR spectra of the complexes formed were obtained using a Specord M 80 spectrophotometer over the range $4000-400 \text{ cm}^{-1}$.

The diffractograms of ammonium fluoroferrates were recorded with a DRON-3 diffractometer by CuK_{α} (with monochromator) or FeK_{α} radiation.

Results and discussion

Interaction of Fe₂O₃ with NH₄HF₂

Ammonium hexafluoroferrate $(NH_4)_3FeF_6$ was first prepared by the reaction of the metal bromide with ammonium fluoride in methanol [1]. We obtained $(NH_4)_3FeF_6$ by a more easy method by caking of Fe₂O₃ with NH₄HF₂ at 200°C (Fig. 1):

$$Fe_2O_3 + 6NH_4HF_2 \rightarrow 2(NH_4)_3Fe_6 + 3H_2O$$
(1)

The reaction takes place in molted NH_4HF_2 (exothermic peak at 130°C); mass loss is 10.6%, that corresponds to a mass loss 10.8% calculated for reaction 1. The chemical analysis data are given in Table 1. $(NH_4)_3FeF_6$ is crystallized in cubic form (cryolite type), a = 9.10 Å.

The next peak at 235°C is thermal decomposition of $(NH_4)_3FeF_6$. The mass loss may be due to the elimination of 0.5 mol of NH₄F and formation of the intermediate compound $(NH_4)_{2.5}FeF_{5.5}$, which was not found by Shinn and coauthors [1]. The calculated ammonium fluoride loss is 14.4% (obs. 15.0%). The compound formed is isostructural with initial $(NH_4)_3FeF_6$. At 330°C a larger endothermic effect was observed, a mass loss is equivalent of 1.5 mol NH₄F and NH₄FeF₄ formation (Δm_{obs} = 39.9; Δm_{calc} = 40.2%). The further heating was accompanied by endothermic effects at 400, 445, 490°C, what may be due to the elimination of NH₄F (NH₃, HF) and partial reduction of Fe(III) to Fe(II) by ammonia isolated, as in the case of (NH₄)₃CrF₆. According to X-ray data the end-product is FeF₃ and FeF₂ mixture. The stoichiometry of this interaction can be expressed by the following scheme:

fluoroferrat	
Ammonium	
Table 1	

8

N° Sp.					Content	/mass. %		
	Compound	Synthetic method		Found			Calculated	-
			NH4	Fe	щ	NH4	Fe	щ
••• •	(NH ₄) ₃ FeF ₆	$Fe_2O_3 + 6NH_4HF_2$	23.8	25.0	50.3	24.11	25.00	50.89
		cake, 200°C						
6	(NH4)2.5FeF5.5	Decomposition of (NH4) ₃ FeF ₆ at 270°C	21.9	27.0	50.2	21.90	27.25	50.85
e	(NH ₄) _{2.8} FeF _{5.6}	Evaporation of (NH4) ₃ FeF ₆	22.9	25.4	48.4	23.68	26.32	50.00
		aqueous solution						
4	(NH4)2.5FeF5	Monocrystals from aqueous solution of cake of pyrrhotine with NH ₄ HF ₂	22.8	28.7	48.9	22.96	28.57	48.47
S	(NH4)2.4FeF4.8	Solid after leaching of cake	21.5	28.0	45.5	22.69	29.41	47.90
		pyrrhotine with NH4HF2						

Fe₂O₃ + 6NH₄HF₂ → FeF₃ + FeF₂ + 0.165N₂ + 5.67NH₃ + 7HF + H₂O
(
$$\Delta m = 58.8\%$$
) (2)

The mass loss on the final step depends on degree of Fe(III) reduction.

Fig. 1 DTA/TG curves of mixture of α -Fe₂O₃+6NH₄HF₂ in labirinth crucible

Thermal decomposition of $(NH_4)_x FeF_{2x}$ ($2 \le x \le 3$)

 $(NH_4)_3FeF_6$ is water-soluble (~50 g/l). By evaporation of the solution the crystals formed have no $(NH_4)_3FeF_6$ composition: modulus of solid $(NH_4)_2.6FeF_{5.6}$. (0.4H₂O was the only compound precipitated from the solution of ammonium hexafluoroferrate. An analogous fact takes place also in the case of cryolite Na₃AlF₆. The modulus of solids obtained from aqueous solutions of cryolite was not high than 2.8–2.9 [4]. Brosset [5] explained this fact by the partial substitution of fluorine by water molecules with displacing from the lattice an equivalent number of alkaline metal. However, we can not apply such argument

in our case. From aqueous solutions of $(NH_4)_3FeF_6$ the cubic $(NH_4)_{2.8}FeF_{5.6}$ (Sp.3, Table 1) falls out. There are not crystallization water bands in its IR-spectrum (Fig. 2). In the present case the formal oxidation state of ferrum is lower than 3 and it is equivalent to the modulus of solid (2.8). This appears to be due to a partial reduction of Fe(III) to Fe(II) in ammonium fluoroferrate solutions. The complex compositions depend on Fe(III): Fe(II) ratio.

Fig. 2 Infrared spectra of ammonium fluoroferrates (NH₄)_xFeF_{2x}: a - in Nujol mull, b - in Flurine oil

The ammonium fluoroferrates with the lower modulus value were obtained by water leaching of the cake of pyrrhotine (Fe_{1-x}S) with ammonium bifluoride (solid:liquor= 1:4). The solid after leaching was a composition (NH₄)_{2.4}FeF_{4.8} (Sp.5). The octahedral crystals (NH₄)_{2.5}FeF₅ (Sp.4) of a good quality were precipitated by slow evaporation of the aqueous solution. The thermal decomposition of the former solid under quasi-isobaric conditions leads only to FeF₂. In the second case the mixture of FeF₂ and FeF₃ was formed. The schemes of these reactions can be expressed as follows:

$$(NH_4)_{2,4}FeF_{4,8} = FeF_2 + 0.065N_2 + 2.27NH_3 + 2.8HF$$
 (3)

$$(NH_4)_{2.5}FeF_5 = 0.75FeF_2 + 0.25FeF_3 + 0.04N_2 + 2.42NH_3 + 2.75HF$$
 (4)

The thermal decomposition of $(NH_4)_{2.8}$ FeF_{5.6} results in also FeF₂ and FeF₃ mixture:

$$(NH_4)_{2.8}FeF_{5.6} = 0.3FeF_2 + 0.7FeF_3 + 0.016N_2 + 2.77NH_3 + 2.9HF$$
 (5)

The mass loss data by thermal decomposition of $(NH_4)_x FeF_{2x}$ ($T= 500^{\circ}C$) are shown in Table 2.

Table 2 Results of thermal decomposition of ammonium fluoroferrates at 500°C

Compound	Mass loss/%	
	Calc.	Found
(NH ₄) ₃ FeF ₆	51.3	52.0
(NH4)2.8FeF5.6	49.6	50.6
(NH4)2.5FeF5	49.6	49.2
(NH ₄) _{2.4} FeF _{4.8}	50.6	50.3

Fig. 3 DTA/TG curves of ammonium fluoroferrates $(NH_4)_x$ FeF_{2x} (x=2.5) in labirinth crucible

The data showed that the thermal decomposition of ammonium fluoroferrates is accompanied by partial reduction of Fe(III) with ammonium isolated. The composition of complexes can be expressed as $(NH_4)_xFeF_{2x}$ where $2 \le x \le 3$. The decomposition of the compounds investigated is practically identical which seems to be closely related with their identical structure. All the complexes formed are crystallized in cubic form (cryolite type). During the first step of decomposition at 330°C (Fig. 3) the ammonium fluoroferrates isostructural with NH₄FeF₄ are produced. This structure retains up to the final stage when the FeF₂ and FeF₃ mixture is formed. Such a mixture can be used for obtaining of crystalline form of FeF₃ by fluorination with F₂ at 350-400°C. The FeF₃ crystals were previously prepared with a more difficult method at 1000°C in unaqueous HF.

References

- 1 D. B. Shinn, D. S. Crocket and H. M. Haendler, Inorg. Chem., 5 (1966) 1927.
- 2 D.-H. Menz and U. Bentrup, J. Fluor. Chem., 54 (1991) 174.
- 3 B. Cox and A. G. Sharpe, J. Chem. Soc. (1954) 1798.
- 4 V. S. Jatlov, Zh. Obshchei Khimii, 7 (1937) 2439.
- 5 C. Brosset, Nord Kemikermode, 5 (1939) 198.

Zusammenfassung — Es wurden verschiedene Ammoniumfluoroferrate $(NH_4)_x$ FeF_{2x} (2 $\leq x \leq 3$) untersucht. Die thermische Zersetzung der erhaltenen Verbindungen kann anhand ihrer gleichen Kristallstruktur (Kryolith-Typ) erklärt werden. Alle beim ersten Zersetzungsschritt geformten Ammoniumfluoroferrate sind isostrukturell mit NH₄FeF₄. Die Zersetzung wird von einer teilweisen Reduktion von Fe(III) zu Fe(II) begleitet. Das Endprodukt der thermischen Zersetzung ist ein Gemisch aus FeF₂ und FeF₃.